Overview

Endeavor I
- Located in Osceola County in northwestern Iowa
- 100 megawatts
- 40 2.5-megawatt Clipper wind turbines

Endeavor II
- Also located in Osceola County, Iowa
- 50 megawatts
- 20 2.5-megawatt Clipper wind turbines

- Owned and operated by a subsidiary of NextEra Energy Resources
- Each wind turbine is about 262 feet tall from the ground to the hub in the center of the blades
- The two sites combined are capable of producing enough electricity for approximately 37,000 homes
- Both sites began commercial operation in 2008

Benefits
- Site employment
- Adds tax base to Osceola County
- Provides economic stimulus of landowner lease payments
- Creates no air or water pollution
- Uses no water in the generation of electricity
- Allows land to remain in agricultural use

About NextEra Energy Resources
- A leading clean energy provider operating wind, natural gas, solar, hydroelectric and nuclear power plants across the nation
- More than 18,000 megawatts of generating capacity in 26 states and Canada
- The largest wind generator in North America with facilities in 17 states and Canada
- A subsidiary of NextEra Energy, Inc., with headquarters in Juno Beach, Florida

How It Works

Wind turbines work on the same principle as a child’s pinwheel. When you blow on a pinwheel, the blades of the pinwheel spin around—same with a wind turbine.

When the wind blows against the blades of the wind turbine, the blades slowly rotate. The blades are connected to a drive shaft inside the large box (called a nacelle) seen on the top of the tower. The drive shaft turns the generator, which makes the electricity. Each wind turbine operates independently of the others. Each is, essentially, an individual power plant.

The turbine has a weather station on the top that tells it the wind speed and wind direction. That information is sent to the turbine’s computer, which moves the top of the turbine (the nacelle and blades) so that the blades are always facing into the wind. The nacelle can turn 360 degrees.

The electricity is carried in cables from the generator down the inside of the tower, then underground to the site’s substation. That power then goes into the offsite transmission lines and is used by the local utility to serve its customers in the region.